DRecPy

View on PyPIReverse Dependencies (0)

0.2.0 DRecPy-0.2.0-py3-none-any.whl

Wheel Details

Project: DRecPy
Version: 0.2.0
Filename: DRecPy-0.2.0-py3-none-any.whl
Download: [link]
Size: 95345
MD5: 065425e37f5d30070f539e432762f52b
SHA256: 7a4758e2b886601f7b2621ccb7f26f80ae26a24c476bacfaf9ed254b072d9785
Uploaded: 2020-09-02 01:11:29 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: DRecPy
Version: 0.2.0
Summary: Deep Recommenders with Python: A Python framework for building Deep Learning based Recommender Systems
Author: Fabio Colaço
Author-Email: fabioiuri[at]live.com
Home-Page: https://github.com/fabioiuri/DRecPy
Keywords: recommender,recommendation,system,machine learning,deep learning
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 3 - Alpha
Classifier: Topic :: Scientific/Engineering
Requires-Dist: scipy (<2,>=1.2)
Requires-Dist: joblib (<1,>=0.13)
Requires-Dist: pandas (<1,>=0.24)
Requires-Dist: numpy (<2,>=1.16)
Requires-Dist: scikit-learn (>=0.20<1)
Requires-Dist: tensorflow (>=2.0<3)
Requires-Dist: matplotlib
Requires-Dist: tqdm
Description-Content-Type: text/markdown
[Description omitted; length: 9287 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.33.4)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
DRecPy/__init__.py sha256=Gz3CMrBcaYu52AtXdtsdP2yjRn-rdkHTXDnBg1VZuR8 155
DRecPy/Dataset/__init__.py sha256=Tg6REdoAyUC6L1a3UvAZWqcqlMRZPPjtehoAt4XHcsY 731
DRecPy/Dataset/dataset_abc.py sha256=6i6vgl8O9gyI1WeorodOGY1DVKybQjJhz8hi2TI_G-w 13517
DRecPy/Dataset/dataset_factory.py sha256=ZdPupdIJLVMPh6pI6TJJ4EFYVTZlKOKyg_wUHm3QSNs 3109
DRecPy/Dataset/db_dataset.py sha256=UAPYBoJBI_rIqup-2yyA3HgvMzMJG9c-uOv3lM2S73Y 42029
DRecPy/Dataset/file_utils.py sha256=79mYDCqScSCAbUzUGeeCsIL7OCrcgd8R1CEWbk9gJTs 1886
DRecPy/Dataset/integrated_datasets.py sha256=tE0JYH1RPE3iV2bE9JGWEdq87ESoKTmT8Tc0yJn6OXw 10404
DRecPy/Dataset/mem_dataset-backup.py sha256=mnU4P9jX5lF8TS4aP7odAJ72xKBNPo5L7MH13ZlIJMw 26567
DRecPy/Dataset/mem_dataset.py sha256=UwjMLzvZf2efSVs1YYygsWwATN3V_G7DEmkzxmOR_Ic 21770
DRecPy/Dataset/mem_dataset_new.py sha256=YQj23IOTIv_emXccrK9aPwf_C8nSV2FuXWqf_Rm8Mas 30011
DRecPy/Dataset/mem_dataset_numpy.py sha256=KwVRUwCBmdPY8C68fohw1oO1XrDTTKwYGitO5NiDBwE 26216
DRecPy/Evaluation/__init__.py sha256=lOdtAlv3me-LADcRHPDmxQy2ZtYZ_EmS6ESpxdbss6k 76
DRecPy/Evaluation/loss_tracker.py sha256=6Lm_1aQvxkRvdd78l8Cw1MhWDPEouwPD1yeMN_TtXMc 4177
DRecPy/Evaluation/Metrics/__init__.py sha256=msnHZjsE9jLDD8rYZ5orbIGbWcM39HEMC5eZIJfdI5Y 681
DRecPy/Evaluation/Metrics/metric_abc.py sha256=3mUyRZjAusn6xpoOT-Tuxv_1Y1rdnw9cPtAiCodzJnc 566
DRecPy/Evaluation/Metrics/ranking.py sha256=vSCt12HMDXq4XM1G9rZTmzqrR-JgXw2DzQMAd7DWkYc 10188
DRecPy/Evaluation/Metrics/regression.py sha256=8aoUeO5Q8_vKV8hfEozBpfN9INhplSR6fU4fsK3_kU8 811
DRecPy/Evaluation/Processes/__init__.py sha256=xnz2IDqmNzbjBA7WwcHSa-zxDlk-RpRdjZT7ZDtladw 284
DRecPy/Evaluation/Processes/predictive_evaluation.py sha256=VtEJ1Mj3ClCbcxdvAdTlg4jtp0nY614I0EZ78OkzQz4 3300
DRecPy/Evaluation/Processes/ranking_evaluation.py sha256=T10sSMA-aFfZJu8jhia60AlgNavyHBPc6qLI1VB7rV4 13846
DRecPy/Evaluation/Processes/recommendation_evaluation.py sha256=iVYibz5Kr4felaRDc9EoZ5yc2j3zOLl3t25HACknEcM 9623
DRecPy/Evaluation/Splits/__init__.py sha256=_Hqxl-2LNO4753N7MfVwAuo5FHrSBaS0C0mbZrURj_o 197
DRecPy/Evaluation/Splits/leave_k_out.py sha256=WMTUiwKdZ2Mm8tzJ51Tyd73whTk5CtNDJACUjBobMiQ 7050
DRecPy/Evaluation/Splits/matrix_split.py sha256=zH6kakT-9RMSiBZoQ4xjq9ofIQ8stDx8ngm-HmvFrto 4840
DRecPy/Evaluation/Splits/random_split.py sha256=8MJNnNsEwJLhYhO-b5nq9Wn6EYeJjr9ovEwLjh2ok0E 2298
DRecPy/Recommender/__init__.py sha256=vuA0hDV3uXgwl8zR9YO8rsrtbJRqluIjw2_EbrikZ50 236
DRecPy/Recommender/caser.py sha256=Y_aVGxQZxR9okfBP59HKBuYNoWaczF7f96SkX9HldMU 7629
DRecPy/Recommender/cdae.py sha256=TVfjDfh3S5hNaeWj-oTFRwDdYJi6AfQa-rveW0SFwvU 5334
DRecPy/Recommender/dmf.py sha256=oczUjU8if3fTtJc3p5IIiFN0MOp3vIPXXNlviCem7F8 5645
DRecPy/Recommender/neumf.py sha256=opkgMJAqPUgdEfZPnbEVPyMi9d-_HqC8Rv17D5eyDok 8907
DRecPy/Recommender/recommender_abc.py sha256=7d4C67dXTkcEjZsmoefp9mnRAOfPMnsFbY623Sfi2Og 28633
DRecPy/Recommender/test.py sha256=0yLwxPIBozrbGOFv5r1NNIwJnOqRuJaEhhFB8Z5AE5U 5780
DRecPy/Recommender/Baseline/__init__.py sha256=FekePIJQRtCOtNGwKwZ3Iwn9gHCfrnmxXVPbnx69OXg 111
DRecPy/Recommender/Baseline/aggregation.py sha256=xJKQqAJFmoWS2tNNVDDqoakV6VIuKOePIRspyjj7fj8 1106
DRecPy/Recommender/Baseline/base_knn.py sha256=CDGm20Q6r4wsS4i2J9RJSbJDyrad-FEKvXDsQ7YuS5g 5263
DRecPy/Recommender/Baseline/item_knn.py sha256=vsHVDMDqQrv1z5ssxdLXBvufPygFCGD0dRy-MCMGvNc 3898
DRecPy/Recommender/Baseline/similarity.py sha256=f6zlaBc_KH27Zmi8knb0RDNygxG4YZusrdrsDfi9dpU 9599
DRecPy/Recommender/Baseline/user_knn.py sha256=DEiXqb-69qrXEcaeCq7WshLBfihg1umiOh0pb4UYqv8 3871
DRecPy/Recommender/Baseline/user_knn_new.py sha256=nmxX6at4C33oej__rz64MN3jk8PWIGrDvf38hxlA-_I 4053
DRecPy/Recommender/EarlyStopping/__init__.py sha256=5g0odQwXnC7ln7DHgAjfO6mu5Vja-zDgT5B0s0yJFkQ 111
DRecPy/Recommender/EarlyStopping/early_stopping_rule_abc.py sha256=BEGbLEQnvcB454ZHfJp0pVgpt-MR1j1T1hPti6mq8Jw 5338
DRecPy/Recommender/EarlyStopping/max_validation_value_rule.py sha256=CcGuE8mq6U88mVD57pEXjNcrR8ybUvA3PoFPkQVXtpI 1309
DRecPy/Sampler/__init__.py sha256=7tZSAFvTI4Qo1KqHRuLtTEb3Ihj5mPj8m46zuHBMRsc 138
DRecPy/Sampler/list_sampler.py sha256=mF7ef8ca6IXylqSZXS2tqjbBGgBObqy2e-CO7KGkF7I 9230
DRecPy/Sampler/point_sampler.py sha256=y5KLW-zsxYIic5_Z0nqrW77wuCx3DdassBiBYQHYXmc 4855
DRecPy-0.2.0.dist-info/LICENSE.md sha256=N6DARDE0EwTstEtQCTnQ_DfayNfLzUepLa-QAQLNFJA 1095
DRecPy-0.2.0.dist-info/METADATA sha256=bsdOlfxElTEziOZDk9xbsXjwDzmFcrqyB60UXxmzQ7s 10480
DRecPy-0.2.0.dist-info/WHEEL sha256=QBOOAdG2icRHGBs2s94rfaUlHrdfNBp-TceubUYCwOE 97
DRecPy-0.2.0.dist-info/top_level.txt sha256=YU300nGYMX_g2_IFj4APGxGmhMOy-6AhhMpXtQbs-PI 7
DRecPy-0.2.0.dist-info/RECORD

top_level.txt

DRecPy