kerascv

View on PyPIReverse Dependencies (0)

0.0.34 kerascv-0.0.34-py2.py3-none-any.whl

Wheel Details

Project: kerascv
Version: 0.0.34
Filename: kerascv-0.0.34-py2.py3-none-any.whl
Download: [link]
Size: 91296
MD5: cce5c9d3d0bcf9fca8ecf72631ca1e3b
SHA256: 9041e4a5f9221368ce2486d9394f1888bed4ba99c2f04fd28aa54773bd80e3e3
Uploaded: 2019-07-02T19:40:38

dist-info

METADATA

Metadata-Version: 2.1
Name: kerascv
Version: 0.0.34
Summary: Image classification models for Keras
Author: Oleg Sémery
Author-Email: osemery[at]gmail.com
Home-Page: https://github.com/osmr/imgclsmob
License: MIT
Keywords: machine-learning deep-learning neuralnetwork image-classification keras keras-mxnet imagenet vgg resnet resnext senet densenet darknet squeezenet squeezenext shufflenet menet mobilenent igcv3 mnasnet efficientnet
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Requires-Dist: h5py
Description-Content-Type: text/markdown
[Description omitted; length: 29789 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.33.1)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
kerascv/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kerascv/model_provider.py sha256=FZb_FZ5oEgJDIIzxInAeTRU1VMZgcXpDMv9PfF5M1zk 7573
kerascv/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kerascv/models/alexnet.py sha256=GA5-CldsJsIAWPsZX-9zLC_uqrz21k86PEdBxZePi4U 8105
kerascv/models/common.py sha256=T4OlY-08kQunUnBZPVc3WBvTcS1In3v7rRVzyClUcCM 43927
kerascv/models/darknet.py sha256=X-6fINns2-7hTdpB-fLYd4ZmUkOVn-pq-QK_5aUguw4 8364
kerascv/models/darknet53.py sha256=W-eGaCKAsv4QRguGUcWjOZutj1N97SYSYXcSrN3wWBw 6717
kerascv/models/densenet.py sha256=DgnOWdK0d0AA768-GxHE4Dgu31CwoBf6HXjwwOn_DLI 10165
kerascv/models/efficientnet.py sha256=iYB3gCvSmAXKE-xnMVLD-PNKNUpaLLDh9j2xE__ndD4 27522
kerascv/models/igcv3.py sha256=e2cjl9J5F97cBbPsMs4ZBgjMogrJh_K3LifCrhz-90Q 9729
kerascv/models/menet.py sha256=1naw83zndwXGQxRnEP51Pwj-susjCZLw0GDPUpTKIGo 15991
kerascv/models/mnasnet.py sha256=ZwKr_j4w_GiQ43uCmpwCWJZ5no3Cjd1dNXiDKdFB7rE 10488
kerascv/models/mobilenet.py sha256=RpL3ZkU_1uxpoV6Ar0-CSX0yPE-2Rcq62VSiKmB3q1U 11467
kerascv/models/mobilenetv2.py sha256=nYzgvw_ER8H1qaO10HmNj0ogQF9VkVSmbjdxQ7ELbuY 9624
kerascv/models/model_store.py sha256=t6Y170BwqihENjknK47O_JpmjOxbU96d7m_TGOy2XvE 25758
kerascv/models/preresnet.py sha256=kTU8iqoqJaUikVyLmSRyWXKga5etOCAVIPBK9ZxZbMQ 26979
kerascv/models/resnet.py sha256=7Oo8pEqZvtL2aTA5qh5_Gf-D2Z54KvxxRsYFPuovsOM 24910
kerascv/models/resnext.py sha256=Wsm65yWeI-WMcWe_lDa76WAJUBEhD4vpwkQiiPjIlz0 15119
kerascv/models/senet.py sha256=5g9xQ2gkqiaYePaAyMgQ7Cj4xopmBfbFm620b2I5i1E 13481
kerascv/models/sepreresnet.py sha256=_PJJR4GbWbkJf145dYlnmUX3tByiaxLOifoKD0AYTX0 13639
kerascv/models/seresnet.py sha256=VijZchWYYiRpThqYKbhBpVsXIsJwjIVtzAoT1NEbIUo 18391
kerascv/models/seresnext.py sha256=zNwN8d0GGC9donVPCYMkfw3X7jdaZpBeAzB6aJBVdFQ 8659
kerascv/models/shufflenet.py sha256=Gx78IuZ08XM3iS9H_fXZTMcCyc4BnFyOtgwClusUZvw 16014
kerascv/models/shufflenetv2.py sha256=DpIv-bFdJnv1zuC44TRs7KT3Yino_W8qyISGLwDdhXw 12115
kerascv/models/shufflenetv2b.py sha256=XbUIElXdekA1vn55q4G1Ak998X-vXTvDzOIDsr1eOhA 12357
kerascv/models/squeezenet.py sha256=dn8OdosVzC2L6eU7-QeYjWc2py_pEssgMs968-L4LCw 12387
kerascv/models/squeezenext.py sha256=ZCc9bbkU2PCDvOl54IzEvXJ9KWV_GwtXp2pl-Yw5-QI 12364
kerascv/models/vgg.py sha256=TDEo0wLe4Pzqpu9qacgFWHX0lWOZuwrs4PbvzxcKyxg 16380
kerascv-0.0.34.dist-info/LICENSE.txt sha256=Wr0V_EGF_rLAvGs1Fs8X5Rx2R_CTYg-fncwPnsp-CJI 1090
kerascv-0.0.34.dist-info/METADATA sha256=O_3fjMlHYdZ92UMz7yw7x6LcMyWyYie2qJszjA7B3Fw 30601
kerascv-0.0.34.dist-info/WHEEL sha256=05Ahrak1u2K61DpLp9CDNSbUImLTITCMom_cqTFk6pE 116
kerascv-0.0.34.dist-info/top_level.txt sha256=s5Kzj9KmEFXNKM-l3VJTgWoB0u51dZhhfUp4o2CJpgg 8
kerascv-0.0.34.dist-info/RECORD

top_level.txt

kerascv