timeseriesflattener

View on PyPIReverse Dependencies (1)

2.4.0 timeseriesflattener-2.4.0-py3-none-any.whl
1.31.2 timeseriesflattener-1.31.2-py3-none-any.whl

Wheel Details

Project: timeseriesflattener
Version: 1.31.2
Filename: timeseriesflattener-1.31.2-py3-none-any.whl
Download: [link]
Size: 4289643
MD5: d5d63fd8df4cbae613b94d52d41fd6db
SHA256: ca1d79eee90578a3d37a03956c43858e20fdebd26c01e61ffe7438249d01a325
Uploaded: 2024-02-19 16:01:05 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: timeseriesflattener
Version: 1.31.2
Summary: A package for converting time series data from e.g. electronic health records into wide format data.
Author: Kenneth Enevoldsen
Author-Email: Lasse Hansen <lasseh0310[at]gmail.com>, Jakob Grøhn Damgaard <bokajgd[at]gmail.com>, Martin Bernstorff <martinbernstorff[at]gmail.com>
Project-Url: homepage, https://github.com/Aarhus-Psychiatry-Research/timeseriesflattener
Project-Url: repository, https://github.com/Aarhus-Psychiatry-Research/timeseriesflattener
Project-Url: documentation, https://aarhus-psychiatry-research.github.io/timeseriesflattener/
License: MIT License Copyright (c) 2022 PSYCOP Group, Aarhus University Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Classifier: Operating System :: POSIX :: Linux
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Microsoft :: Windows
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Requires-Python: <3.13.0,>=3.8.0
Requires-Dist: scipy (>=1.8.0)
Requires-Dist: scikit-learn (>=1.1.2)
Requires-Dist: pydantic (>=2.0.0)
Requires-Dist: pandas (<=2.1.3,>=1.4.0)
Requires-Dist: catalogue (>=2.0.0)
Requires-Dist: numpy (>=1.23.3)
Requires-Dist: pyarrow (>=8.0.0)
Requires-Dist: protobuf (<=4.24.4)
Requires-Dist: frozendict (>=2.3.4)
Requires-Dist: coloredlogs (>14.0.0)
Requires-Dist: tqdm (>4.1.0)
Requires-Dist: polars (>0.18.0)
Requires-Dist: iterpy (==1.5.1)
Requires-Dist: rich (>=13.0.0)
Requires-Dist: pyright (==1.1.330.post0); extra == "dev"
Requires-Dist: pre-commit (==3.4.0); extra == "dev"
Requires-Dist: ruff (==0.2.1); extra == "dev"
Requires-Dist: pandas-stubs; extra == "dev"
Requires-Dist: invoke (==2.1.1); extra == "dev"
Requires-Dist: lumberman; extra == "dev"
Requires-Dist: sphinx (==5.3.0); extra == "docs"
Requires-Dist: furo (==2023.3.27); extra == "docs"
Requires-Dist: sphinx-copybutton (==0.5.2); extra == "docs"
Requires-Dist: sphinxext-opengraph (==0.8.2); extra == "docs"
Requires-Dist: myst-nb (==0.17.2); extra == "docs"
Requires-Dist: sphinx-design (==0.3.0); extra == "docs"
Requires-Dist: pytest (<7.3.0,>=7.1.3); extra == "test"
Requires-Dist: pytest-cov (<3.1.0,>=3.0.0); extra == "test"
Requires-Dist: pytest-xdist (<3.2.0,>=3.0.0); extra == "test"
Requires-Dist: pytest-sugar (<0.10.0,>=0.9.4); extra == "test"
Requires-Dist: pytest-testmon (==2.1.0); extra == "test"
Requires-Dist: pytest-benchmark (==4.0.0); extra == "test"
Requires-Dist: pytest-codspeed (==2.2.0); extra == "test"
Requires-Dist: jupyter (<1.1.0,>=1.0.0); extra == "tutorials"
Requires-Dist: skimpy (<0.1.0,>=0.0.7); extra == "tutorials"
Provides-Extra: dev
Provides-Extra: docs
Provides-Extra: test
Provides-Extra: tutorials
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 7688 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
conftest.py sha256=bUIw4ZWZiE2b828SX51CqX034p8GoZUwkY9VQVh5zfI 1243
test_benchmark.py sha256=kuIouM8a6wFoIYKvPhuX3IM653ov0jzQc2glWjXS6Vw 4827
timeseriesflattener/__init__.py sha256=aTBwTI0TgVG5J17zBPUpuIxFwZQWQtGJSggmufdjoHs 264
timeseriesflattener/aggregation_fns.py sha256=gBi1Fmj-_HYIccRsBU86DiR5iOISewbzbX1-Tyze51w 2855
timeseriesflattener/df_transforms.py sha256=DG-trA8FPAfg7f0Lc7ThOcUA_TjtGmydDdGUW_apYPs 1067
timeseriesflattener/flattened_dataset.py sha256=512K-N7pc9HegojnYIXwnz2x1aZZFWs1L5oQcaH9PsA 35037
timeseriesflattener/flattened_ds_validator.py sha256=a37N46MBAwojO6xPYU0Up-Np9cmUhNXZ71DIe6SYOY0 2147
timeseriesflattener/logger.py sha256=CeyzCmN2e6fBcGwlCJaFKvACzUR33-Aye3RLMzis5BY 2239
timeseriesflattener/misc_utils.py sha256=K8TcEwq3GiNPoWuS5X94dQqwb5C5PktsgaKT1sYZ1pw 7524
timeseriesflattener/feature_cache/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattener/feature_cache/abstract_feature_cache.py sha256=QNuqYNmczROlel9-snZ_9KNZSM6371AN5Y8VZcFHJ94 1977
timeseriesflattener/feature_cache/cache_to_disk.py sha256=VcQB89RDLOZO81FsDAzvQ9bazrUoSTIcRQOHqkdJu8Q 6103
timeseriesflattener/feature_specs/group_specs.py sha256=0VbcC0fPES0y5iDEl-z4CFCbqPHPx_oKNpxMMZ-fG4Y 5526
timeseriesflattener/feature_specs/single_specs.py sha256=605vN1eaPLEG84KEAMeuSWosfyJ-HO6bgnty2_OnEG4 7817
timeseriesflattener/testing/load_synth_data.py sha256=nLHGYTEe7oAawjNRq4E0kilHqc0s_aNBlmodqXoFPro 2978
timeseriesflattener/testing/utils_for_testing.py sha256=KghXgr534pQzDaYobYzRQmnYcH4hCEGAT0a5aBVWI-Y 5437
timeseriesflattener/testing/synth_data_generator/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattener/testing/synth_data_generator/synth_col_generators.py sha256=k-aVmOX_bPIl0BnYo-hscX4V1AKbw-fVHCRFs5fUFqc 5527
timeseriesflattener/testing/synth_data_generator/synth_prediction_times_generator.py sha256=btzD0Ea1QnEEc-ZPnI_sYiXtNtnyPbb489aZz3v71Uc 2691
timeseriesflattener/testing/synth_data_generator/synth_txt_data_generator.py sha256=eYES7Qz1hBmA7AyN9TTTJbuHRqpe3lOrVtsIfUp3xJs 1956
timeseriesflattener/testing/synth_data_generator/utils.py sha256=dve6sUCrFjdHX0Obu7riIjDPH60Lk8zTf2VS_2_ghsc 923
timeseriesflattener/testing/test_data/flattened/generated_with_outcome/create_synth_flattened_with_outcome.py sha256=7rmroPylu6Lq7BwCkutbSbfGqXFDAXN2lgE538XpJ48 1458
timeseriesflattener/testing/test_data/flattened/generated_with_outcome/synth_flattened_with_outcome.csv sha256=SLL6tSQChREDd9zQuTX-hVS511flzP82oKxoGC-k98s 864795
timeseriesflattener/testing/test_data/models/create_bow_and_pca_model.py sha256=-T4T0o3jdOyW_2A4fOuCyM9KfsMvoqKl4PGF8h8vLX4 1874
timeseriesflattener/testing/test_data/models/synth_bow_model.pkl sha256=_mYvdE0xlwm-Ga9MXPPe_n1krVnPKq6Teg8tXHzwPhc 25543
timeseriesflattener/testing/test_data/models/synth_pca_model.pkl sha256=Wj6C3BYYKPBDWmY3KMJWUGsrgMSWURAej5i5VBFJG5I 1015
timeseriesflattener/testing/test_data/raw/create_synth_prediction_times.py sha256=sLTRCLPQuqeMRfhpXkXB2wv5Czul4gz_geFAh1OaB_g 709
timeseriesflattener/testing/test_data/raw/create_synth_raw_binary.py sha256=-WA88XLA3hGrxKPU17RnulfsFEuyQlkGR9NvV8b1KA0 795
timeseriesflattener/testing/test_data/raw/create_synth_raw_float.py sha256=nHPHvjCSTkktf-l7Q_v3l-BLgGwJAM3VTJYnztjl6To 772
timeseriesflattener/testing/test_data/raw/create_synth_sex.py sha256=Le5lriHDrXaWXkVkP-2h3DVg640kKC25UsZcVUKBTDY 696
timeseriesflattener/testing/test_data/raw/create_synth_txt_data.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattener/testing/test_data/raw/synth_prediction_times.csv sha256=AvY81GWI9TTae33n6vZLVNqtcU7D6qs3jPbWJnPw-po 248865
timeseriesflattener/testing/test_data/raw/synth_raw_binary_1.csv sha256=gtBKOiteplM0pn5kKyPK39UbWDeBbg__A5BiXk9k5eo 268962
timeseriesflattener/testing/test_data/raw/synth_raw_binary_2.csv sha256=tnh_gpBTes1RPwSQqNYajNoMFblwz7lpP9sgdf0G0Qg 268904
timeseriesflattener/testing/test_data/raw/synth_raw_float_1.csv sha256=V_x30bbs456DUVCIlOMlUfCiyP2icwYsIoiEUOckevI 4316151
timeseriesflattener/testing/test_data/raw/synth_raw_float_2.csv sha256=kuyvzdhgoBy1J2XQGAqeXhEkzrLB3mC7RKSsGMcYvbE 4315816
timeseriesflattener/testing/test_data/raw/synth_sex.csv sha256=aLpnF-B9PUzRvFwKfKZ9TsjfDgBD19AE_lzBlZcubjM 68900
timeseriesflattener/testing/test_data/raw/synth_text_data.csv sha256=v_4n1hBxUliwIKPjE4uJHNgWtbN1G_dqPos5vkzSg_0 84570
timeseriesflattener/tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattener/tests/test_feature_cache/test_cache_to_disk.py sha256=MGmBddPMI74Zx1nCzc0pBtZdcmUrrvlPlzJ3Tq_fpZo 3223
timeseriesflattener/tests/test_timeseriesflattener/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattener/tests/test_timeseriesflattener/test_aggregation_fns.py sha256=rWu86xbLLP6MGEckVNUGzX2nzyyiOlpsets6fn2hKso 13586
timeseriesflattener/tests/test_timeseriesflattener/test_df_transforms.py sha256=WwXh-vbVKMtUwOiVM5aUq23MWiMIXLgnz4U2Xfn_Lao 1289
timeseriesflattener/tests/test_timeseriesflattener/test_feature_spec_objects.py sha256=t_zxwWDirzVlqrv_jvuRaRd6rDjIwgmOzdouZc3EsVk 3387
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/test_add_values.py sha256=MzagCzaNmZSrrpnck8btJ3qMD3SC5S2gp3GRC9p8cK8 23380
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/test_cache.py sha256=Nb9ltexLECES0f9xKLgaLEyU1HxuF3lcL91_x98ucQs 2645
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/test_concatenation.py sha256=7JpFx53TLdA-r95kJL08oj6A5s9Wmt3r3x1-mH0PQnk 2305
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/test_errors.py sha256=3bQLuQFYgaFcMGXejhbg9WZO0VpL3RN4piaCY5BTPdM 2309
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/test_flattened_dataset.py sha256=qAuGWsALs6KSP1U-1V5RfM--8QLAk5kPMSxEVUMQ1ZU 5787
timeseriesflattener/tests/test_timeseriesflattener/test_flattened_dataset/utils.py sha256=QG6f8XCv70PGrBdnAgoTr_1PM2YlqCRM1ud3JfSPPK0 2396
timeseriesflattener/utils/pydantic_basemodel.py sha256=Ne4kYasxailV5YyKeMOAO7BbBqLPozhS__OsR9b1sHY 984
timeseriesflattenerv2/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattenerv2/_frame_validator.py sha256=zM8r61BUv4y_dh2qZ8Pi-QYALJCByGnB4cZ9wubS4RY 1433
timeseriesflattenerv2/_intermediary_frames.py sha256=O0lc22Fgd3JbaBKqqmeOHdslV0w36lKd08b3WjoLsqA 3155
timeseriesflattenerv2/aggregators.py sha256=HMIgBiy7CMz-xLIXOERJ-m5o57Jrh3iRAPQlHy85imQ 3303
timeseriesflattenerv2/flattener.py sha256=vbBuRjfiNhpQnsfL8BSDm5XukuVGCqTzIrHyLIIucrM 5712
timeseriesflattenerv2/process_spec.py sha256=SO6ACWqqDm7PIRGGRAWk0ozsSVp77xJC6Bp_aoOu4JM 916
timeseriesflattenerv2/test_aggregators.py sha256=d1Wr0dR5TklD2X6NZzn09sf0S49Y6t-JDSut2mUZRl8 4917
timeseriesflattenerv2/test_flattener.py sha256=t5SmHmgzHerUCU4wKtTKev090Z6P_4rdi4Kpx3FUuKo 10230
timeseriesflattenerv2/feature_specs/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattenerv2/feature_specs/default_column_names.py sha256=zyFdrQRbtl7OP0uU-5hmYKWmqj7K5GBL-Dt84daZqgA 179
timeseriesflattenerv2/feature_specs/from_legacy.py sha256=DnQ1JS6jaX6lcIr_-etfEBaeM48smmPsf1udoXza-2c 3500
timeseriesflattenerv2/feature_specs/meta.py sha256=NfqbEO2jM1f9ugFEdRpuCNZs-NCuw1LbAykAlalfhx4 2519
timeseriesflattenerv2/feature_specs/outcome.py sha256=kegA812YHLXbrvLg8BGe6Rrxt2E-dvKZof5FuE7Kr6U 1854
timeseriesflattenerv2/feature_specs/prediction_times.py sha256=zZPp5bXAYi1BLW6q6StZpzuD4CWnKDIsDQzaXOeKA8s 1345
timeseriesflattenerv2/feature_specs/predictor.py sha256=8fPXhZYDws9HeaWXVwsxXRQXCoHO3HvFhbjtvm6vtjI 942
timeseriesflattenerv2/feature_specs/static.py sha256=Fpzs1yoP097ZocX_4cyfZLgfcK0jcyLsjJhrTHCk7Nc 940
timeseriesflattenerv2/feature_specs/test_from_legacy.py sha256=1gqe0pA4Pr2E0APM8r0lXNCYXQmZZAAgWHeX0-O8ngk 1307
timeseriesflattenerv2/feature_specs/test_specs.py sha256=cdadATQcpDlZM9fS_aGsggK-cPiFBu0SKVo4xC7i9r4 1912
timeseriesflattenerv2/feature_specs/timedelta.py sha256=zZQcO319qj8Nfcj39CRccJpYvVi6YteBZhAS3DJdaHo 1368
timeseriesflattenerv2/feature_specs/timestamp_frame.py sha256=Jb0YczfzYDo-xko-UMJ5gkIkwFZ9RdHX6aTHQBmmv24 886
timeseriesflattenerv2/frame_utilities/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattenerv2/frame_utilities/_horisontally_concat.py sha256=2WusjGx4wHYbueDm_iU3Dbr2G08Zf7BiT4PcZqmMkC8 376
timeseriesflattenerv2/frame_utilities/anyframe_to_lazyframe.py sha256=gYeHgTPKI-TL_C0wSqe3-X_Xwjs3DJ8VIrcsOI3xjtc 491
timeseriesflattenerv2/spec_processors/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
timeseriesflattenerv2/spec_processors/static.py sha256=b9dru2C8rcAHywv8A7qXYI-WsvIEjXKA4qz9pYKlE7o 941
timeseriesflattenerv2/spec_processors/temporal.py sha256=9B4jyuf53mQpQaNhz69mmWO-QNYN94650iWLFY0j6gM 5729
timeseriesflattenerv2/spec_processors/test_static.py sha256=jRd9Xez4gOrnYNplz5A0PkdU6RsPJpHLwdijjoyRd8M 1070
timeseriesflattenerv2/spec_processors/test_temporal.py sha256=bLyhUcfyeKaU5TizX-N-0yw1baTEFtF34CNt1lBHc-g 6076
timeseriesflattenerv2/spec_processors/timedelta.py sha256=FI_PT_jA7CIsEk7e4tSysnEMcYBtdsiQGjpqaXGUWzk 1217
timeseriesflattener-1.31.2.dist-info/LICENSE sha256=c0D09gw4HuVM0pLticKTDcYBZBcPIiF7pg1Z5VDgtD0 1087
timeseriesflattener-1.31.2.dist-info/METADATA sha256=JpwDHlpW3ip10ZCrlDNZnPpv-LCHLW1UOeF_TCBJw6o 11726
timeseriesflattener-1.31.2.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
timeseriesflattener-1.31.2.dist-info/top_level.txt sha256=2qxq7KmJ6cMipRRuePeXb-rNLfRCe1JzmRKtNULtWdk 66
timeseriesflattener-1.31.2.dist-info/RECORD

top_level.txt

conftest
test_benchmark
timeseriesflattener
timeseriesflattenerv2