kts

View on PyPIReverse Dependencies (0)

0.1.47 kts-0.1.47-py3-none-any.whl

Wheel Details

Project: kts
Version: 0.1.47
Filename: kts-0.1.47-py3-none-any.whl
Download: [link]
Size: 27970
MD5: 708d78be23c24cfc1e5265544532ed6b
SHA256: 08c3732d6640d341c02f0857207eca64edff9634ba3b4488ef70f330dddb2684
Uploaded: 2019-03-19T19:23:48

dist-info

METADATA

Metadata-Version: 2.1
Name: kts
Version: 0.1.47
Summary: Competition-oriented framework for interactive feature engineering and building reproducible pipelines
Author: Nikita Konodyuk
Author-Email: konodyuk[at]gmail.com
Home-Page: https://github.com/konodyuk/kts
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Dist: mprop
Requires-Dist: pandas
Requires-Dist: numpy
Requires-Dist: scikit-learn
Requires-Dist: scikit-optimize
Requires-Dist: matplotlib
Requires-Dist: dill
Requires-Dist: feather-format
Requires-Dist: xgboost
Requires-Dist: lightgbm
Requires-Dist: catboost
Requires-Dist: swifter
Requires-Dist: kts-cli
Description-Content-Type: text/markdown
[Description omitted; length: 982 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.32.3)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
kts/__init__.py sha256=JuvhnaPEH5nHZHIPml-2ybatUsWjXfLGvt1O2-RhXjI 484
kts/config.py sha256=oITHF-vJlu8R9JqxUQDqH2fVSe6gvpsn5XDrnzkokAE 500
kts/modelling.py sha256=Vux5kWAUPsyKwmgWE45rY386hGurGavIaqfpvDMapg0 5698
kts/pipeline.py sha256=hGZMvZoTvO_xYo2EHPmzZqf5-bIoqyew1LvgkRFTT5M 506
kts/utils.py sha256=BzoBhTDbaakssz0mb1_O0VRzyecetW8mqiNW6G9j5vc 118
kts/cli/__init__.py sha256=xNK5Bfd_QUSFP8RTG5zlaQOzo0yhBbRc5qC6GiY-N28 43
kts/cli/file_system.py sha256=ya_tMLmBjFxQ0GJRUEc2wj-N-1B_9ML4YoUjKw8OYQY 625
kts/feature/__init__.py sha256=m3Xb894bqBQf3ARR63zOQLes8kSInMMefqIY-A6EzcY 142
kts/feature/decorators.py sha256=sDqY_HcUKTomVoljy5gUxmkkSViYhANXhOVUBXe6h70 3994
kts/feature/stl.py sha256=l3hbtk5l5QbvnzhgsF-zVJdNGHpMw9FIf-CzzaGoZ9c 7551
kts/feature/storage.py sha256=ZOlZowRXq2RZOwz3zNqzVOsQNdWMEbM4a09Fx4T45Cg 10955
kts/feature/selection/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
kts/feature/selection/selector.py sha256=v3l-nHmNGty7ey2cL90dCnjD8JFzM1i4ahPwBn5wwZE 161
kts/optimization/__init__.py sha256=tzze5gIJgBQ6PxMNOP949ZLoo7I33EGSdoCKjM_9fRo 32
kts/optimization/optimizer.py sha256=cecuoF4PAd500mixWjLZWStT7PBxNJWk_gPDxoMVs9Y 2260
kts/storage/__init__.py sha256=J-StyT5abTmmgKJqzq4PvSVRRQXUEFVMywHVTykkdTo 92
kts/storage/cache_utils.py sha256=oFybVEug-UYQ1l59l7a0s1dRTdq7BjQeyfGf_gJdeFY 3485
kts/storage/caching.py sha256=ovGnYor7KRfG9GCWw_huMNS0bcVWewfERDcWMFqKLQg 5518
kts/storage/dataframe.py sha256=l2z3lgvXq6HICQKyBg8qxs5oTvN6GPWC5yljty6HF6I 3674
kts/storage/info.py sha256=_U1MJh9fFm3tfdhyVlQRYSYyTIDffruxOAUVW1NSdNI 1165
kts/storage/source_utils.py sha256=3ieRJFt5YULECg8qM5-RzzWOtZClI8ekcaPht0ClIm4 913
kts/validation/__init__.py sha256=U_tgc3eSl-ebrAXdYRneKLKnsDQ0qly_8Kj1naWsNrQ 93
kts/validation/experiment.py sha256=cg3H9FE144wAi8SAEDdrto4Z4OMzCjfQx1JEZjV-_Zo 3202
kts/validation/split.py sha256=aY2I3_udHJgAnfuguBTesHwQOOAYPY1Aa-xvYFTMPfc 2946
kts/validation/validator.py sha256=DqyZu5oOV7Q_2QsvloPvjnT2WvZPIidgE_QAX13UKqE 2271
kts/zoo/__init__.py sha256=TcdP-1SAOyRjp0prC7EE-EFzaZkr-15jsqTD9Wi7IAs 860
kts/zoo/binary_classification.py sha256=w3H2yWARScLcQsAM4gTuAeRO9g__H2PBlxfSUsKcI-o 2696
kts/zoo/classification.py sha256=T3ToZ8Bv33_HSFqBvvk1PjPg4yVLR-9NhRz8Kjq9gnA 2684
kts/zoo/cluster.py sha256=l344lZXt844pgizr-PONhoyav_W8CQBECdza1JA_N0M 6618
kts/zoo/regression.py sha256=T1LkQlkxoit6MYd42lt2hIESZUxmevvRBvfKParB6ac 2562
kts-0.1.47.dist-info/LICENSE sha256=4PRpCLXRcCy8UT5jyN3Uelx3Psp1xupf7rymR8fEjTM 1072
kts-0.1.47.dist-info/METADATA sha256=vv8M7ttjJmc4LVlPt_L1nfnsbPXxmv_nkErwoIKF0QM 1780
kts-0.1.47.dist-info/WHEEL sha256=_NOXIqFgOaYmlm9RJLPQZ13BJuEIrp5jx5ptRD5uh3Y 92
kts-0.1.47.dist-info/top_level.txt sha256=lgJ9xFER4SQJERlYKefh60930cP1xZ_yPhoyP3m6FiE 4
kts-0.1.47.dist-info/RECORD

top_level.txt

kts