logitorch
View on PyPI — Reverse Dependencies (0)
0.0.0 | logitorch-0.0.0-py3-none-any.whl |
Wheel Details
Project: | logitorch |
Version: | 0.0.0 |
Filename: | logitorch-0.0.0-py3-none-any.whl |
Download: | [link] |
Size: | 54531 |
MD5: | f5db65aaeb27788756bf6530b0223441 |
SHA256: | 070fca830e7373537f200d75cc66d1c8dcac750543468951dfffef3561e66bf5 |
Uploaded: | 2022-07-27 20:14:24 +0000 |
dist-info
METADATA · WHEEL · RECORD · top_level.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | bdist_wheel (0.37.1) |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
data_collators/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
data_collators/bertnot_collator.py | sha256=LDmts8e7QIf0ZYploM5ogeAP7HX7Cf6zLnyMByFeR5s | 2104 |
data_collators/dagn_collator.py | sha256=hYC_gsgq6An05w--0IQzQ3IKWxQn_OmiYyy8rS3GcHs | 1435 |
data_collators/fairr_collator.py | sha256=JPSyb9GLi-4NPhOwrB201VFjhF2Pnf64B1NcG8gSnA8 | 1121 |
data_collators/proofwriter_collator.py | sha256=gyc6SwlVDcEz7CgljRQIiTHG7iY_T2RlVzdOM0yYba4 | 2128 |
data_collators/prover_collator.py | sha256=hpG6mFl7lkuTnYlv0h2jGhQadgePHDWhwcqoGUiH2FE | 7064 |
data_collators/ruletaker_collator.py | sha256=YIjtXqrM3JNzmr0wVXQUnJMRtee7HVSmi9mEfxXsBaI | 1736 |
datasets/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
datasets/base.py | sha256=r6FOnR595Ht3AA2tYkH4QltXVmKc6j8TWy-14NNW1ew | 1492 |
datasets/exceptions.py | sha256=4yZCj52nlzFotXnufghjWEj0-Y-lOLqpv7Q2dDev18U | 1230 |
datasets/utils.py | sha256=r_LkLql-BXHnIjPfRdwepjVjWYo9P2g69s9q8u17kts | 3002 |
datasets/mcqa/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
datasets/mcqa/arlsat_dataset.py | sha256=llDjq3fP1dxi49yOrvT3OQ07n3fPq7xm9OjiyQkXBzQ | 4484 |
datasets/mcqa/logiqa_dataset.py | sha256=-KNJ0jTYBckv7Q4EMGKYCXoWBGRLGPdXTHRsN-a-8tI | 3490 |
datasets/mcqa/reclor_dataset.py | sha256=k8de_8fqF2JIOrEq9BOd8W_kfRQujhkF0SnLVYo1kys | 2736 |
datasets/mlm/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
datasets/mlm/wiki20k_dataset.py | sha256=1_z9XnKiFMERPNz9LnbSSpWxv3lRl2bP7UXBuqo5OZQ | 2144 |
datasets/proof_qa/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
datasets/proof_qa/proofwriter_dataset.py | sha256=7FROGv97JQHdAPrVBO-3zXxKr9EdaRlTdMdJk4acjH8 | 17601 |
datasets/qa/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
datasets/qa/abduction_rules_dataset.py | sha256=ccjHUxtmS-Edai0q4beUKJjJUYSwl_RcCCJxP7iQW9M | 2921 |
datasets/qa/pararules_plus_dataset.py | sha256=2VzAvFXxUHtn4W8H1_98X4Dn0ucGDPWQGdUoWWLOjS0 | 2963 |
datasets/qa/ruletaker_dataset.py | sha256=GHx38G0vU5zJU4GVfmupBOTGAWTs_vVYJlATaikg7nY | 3418 |
datasets/te/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
datasets/te/control_dataset.py | sha256=_AQpTqq4BhBGI5KzJJoJLxAlIS2Od5KS7LKClpUmsuo | 4111 |
datasets/te/mnli_dataset.py | sha256=Ab1Ezz607v6JRvTw3NDalt1Sgk1v2ZcsvpfuJfvcX9w | 2334 |
datasets/te/negated_mnli_dataset.py | sha256=txl-eAMmrCa173T66BHd9sjvNof1LNyhn9G01Bzlv3I | 2119 |
datasets/te/negated_rte_dataset.py | sha256=c1AvX86vLdWAbC40Sqlh0GuZTX66AivPNuyR2s9RXpg | 2078 |
datasets/te/negated_snli_dataset.py | sha256=oNlFrSp1BK8QjNerQo2FcNKRuXlBbITmB-HEaq1Sink | 2119 |
datasets/te/rte_dataset.py | sha256=XWwGwYkn1mtjFoPwYf5wzZrBgEhoYhsORsu_gAGKQm4 | 2295 |
datasets/te/snli_dataset.py | sha256=cElKxwpD1uQeRt6SNd7BQ8pfGz2WklsZfXX1jjw3dI4 | 2398 |
losses/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
losses/unlikelihood_loss.py | sha256=V8igsZi6Qc_QgVSipxCpBTWiQVHsc8x3HdShNIHcC54 | 2006 |
models/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
models/adalogn.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
models/bertnot.py | sha256=w6HUuNoMjNY9j0mXLYekXXxp4CKgmSPWUJDGRW7imN0 | 4616 |
models/dagn.py | sha256=sjzLzrTPY_v-Q46E8z4asp89f5X0HfDtaoeDZFuKOgw | 488 |
models/exceptions.py | sha256=EldenRG8NgRwjjBZpLI0wuefI67K3DVSAvHqYpBZWbk | 538 |
models/fairr.py | sha256=9_cH1ICfUuQtWw2owInctQtKMct7pluIaR9jivZfNZk | 1950 |
models/focal_reasoner.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
models/lreasoner.py | sha256=OVor8zvsNaRf3dBsKljtqyaC2CSShgGyOm-LAdWnVnQ | 682 |
models/proofwriter.py | sha256=_Zt6C9e3jBlwIe9d1gJTXbUXUKhrdtjZ4kgbNAPqcAs | 1694 |
models/prover.py | sha256=z4IEkLxnsllYACFSOC47StaAY6i8J10Wwa74KcSkPOo | 9023 |
models/ruletaker.py | sha256=yXBLLe3zfu3huydAjwnfqrh9l2zzC7ihGZel2B-N8eY | 1535 |
pl_models/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
pl_models/bertnot.py | sha256=RmBYvcZw6Pru3paoxs8-jrgPcmJ9_yq2fjOlhFD0kOQ | 7464 |
pl_models/proofwriter.py | sha256=s6aja0MjIGROqjzFN2kuZJX10h2GqYuWK5e10MjKTac | 2657 |
pl_models/prover.py | sha256=5xWmXC4XMGl8NEt0kXp6dLqktr8hG9hyrRHwXpDQaKA | 2154 |
pl_models/ruletaker.py | sha256=uKcoow6wiRZVuNzqGb5HCyVYa0KLZqXQD8lPIHBBnzU | 1812 |
utilities/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
utilities/coreference_resolution.py | sha256=gg_cYewPKVrEK-st2Cr_41j_3jH71ESjhvt5V3UDL8Q | 670 |
utilities/discourse_delimiter.py | sha256=jIdnAed88TwlkfdWb-JiIK8SiAJHXpTdCJyM2ZI-gNg | 3223 |
utilities/exceptions.py | sha256=zKVoAW0ZmK63aXMD3repgSUFkdMkzUYhsjVIm_roSW8 | 297 |
utilities/extract_logical_expressions.py | sha256=6N3g83ESMTmmgB1wjhHkk5pPWOlGipLEkZ00wdB7dVQ | 31949 |
utilities/sentiment_analysis.py | sha256=6iziYZ7MXqyUXwlkB8_T9W3OWVR5fbrJbTmJOxLEcKY | 1013 |
utilities/triplets_extraction.py | sha256=zoGOFdqsxaeFF7-M1qFOmGnpO8J0InlE_UAH45i4p6c | 80 |
logitorch-0.0.0.dist-info/LICENSE | sha256=RyYQj89P4EnW0dCfdJ6MPuSMEN6CPT1YxgEquZCH1qU | 11542 |
logitorch-0.0.0.dist-info/METADATA | sha256=MgXHkthUTY_hZY4TD7OzuDEeraQEhN0TEmpivFjLw_I | 4779 |
logitorch-0.0.0.dist-info/WHEEL | sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA | 92 |
logitorch-0.0.0.dist-info/top_level.txt | sha256=dMD7WFLfmVwZA9QmLxrCDkUOP38QMdEUQvSD4vYDVG8 | 58 |
logitorch-0.0.0.dist-info/RECORD | — | — |
top_level.txt
data_collators
datasets
losses
models
pl_models
utilities